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The minimal model to describe many spin-chain materials with ferroelectric properties is the Heisenberg
model with ferromagnetic nearest-neighbor coupling J1 and antiferromagnetic next-nearest-neighbor coupling
J2. Here we study the thermodynamics of this model using a density-matrix algorithm applied to transfer
matrices. We find that the incommensurate spin-spin correlations—crucial for the ferroelectric properties and
the analog of the classical spiral pitch angle—depend not only on the ratio J2 / �J1� but also strongly on
temperature. We study small easy-plane anisotropies which can stabilize a vector chiral order as well as the
finite-temperature signatures of multipolar phases, stable at finite magnetic field. Furthermore, we fit the
susceptibilities of LiCuVO4, LiCu2O2, and Li2ZrCuO4. Contrary to the literature, we find that for LiCuVO4 the
best fit is obtained with J2�90 K and J2 / �J1��0.5 and show that these values are consistent with the observed
spin incommensurability. Finally, we discuss our findings concerning the incommensurate spin-spin correla-
tions and multipolar orders in relation to future experiments on these compounds.
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I. INTRODUCTION

A number of spin-1/2 chain materials have recently been
investigated showing multiferroic behavior, i.e., an intricate
interplay of magnetic and electric order.1–7 A microscopic
model for the electric ordering based on a spin-current
mechanism has been introduced in Ref. 8 and seems to pro-
vide an understanding for most of the experimental findings.
Here the electric polarization P is related to noncollinear
spin-spin correlations, P�eij � �Si�S j�, where Si is a spin-
1/2 operator at site i and eij is a vector connecting the chain
sites i and j. Later it has been shown based on a Ginzburg-
Landau theory9 and symmetry arguments10 that this coupling
between the polarization and magnetization always exists in-
dependent of the crystal symmetry. To obtain a noncollinear
spin structure on a lattice without geometrical frustration, a
minimal model has to contain additional interactions apart
from the nearest-neighbor Heisenberg interaction. One pos-
sibility are frustrating longer-range interactions. For chain
materials consisting of edge-sharing copper-oxygen
plaquettes such as LiCuVO4, LiCu2O2, or Li2ZrCuVO4 the
next-nearest-neighbor interaction is particularly relevant
leading to the minimal model,

H = �
r

�J1�SrSr+1�XXZ + J2�SrSr+2�XXZ − hSr
z� . �1�

Here �SrSr+i�XXZ=Sr
xSr+i

x +Sr
ySr+i

y +�Sr
zSr+i

z with ��1 being an
exchange anisotropy. For the edge-sharing chains the
nearest-neighbor coupling is ferromagnetic �J1�0� while the
next-nearest-neighbor coupling is antiferromagnetic �J2�0�.
This is the case we want to study here. The external magnetic
field is denoted by h. In the classical isotropic model
��=1� without field the frustration leads to a helical spin
arrangement with a pitch angle �=arccos�1 /4�� for
�= �J2 /J1��1 /4. As in the classical model, the ground state
of the quantum model �1� is ferromagnetic for ��1 /4. For
��1 /4 the ground state is a singlet whose nature has not
fully been clarified yet.11,12 Based on a renormalization-

group treatment starting from two decoupled Heisenberg
chains �J1=0�, it has been predicted that any small J1�0
produces a finite but tiny excitation gap.12 Numerically such
a gap could not be resolved so far.

Due to the SU�2� spin-rotational symmetry only a quasi-
long-range helical order �algebraically decaying� is possible
in the isotropic model �1� without field. Whether the corre-
lation functions are indeed algebraically or instead exponen-
tially decaying with a very large correlation length as sug-
gested in Ref. 12 is a question which we will not address
here and which is not important for the following discus-
sions. One can in any case still define a pitch angle � by
studying the spin-spin correlation functions which, however,
turns out to be substantially modified compared to the clas-
sical case due to quantum fluctuations.13 If the SU�2� sym-
metry is broken by applying either a magnetic field h or by
an anisotropy ��1 then the vector chirality,

	�n� = �Sr � Sr+n�z =
i

2
�Sr

+Sr+n
− − Sr

−Sr+n
+ � �2�

can have a nonzero expectation value because this requires
only the breaking of the remaining Z2 symmetry. The vector
chirality as defined in Eq. �2� is directly related to the spin
current jr= jr

�1�+ jr
�2� which can be obtained from a continuity

equation �tS
z+�rj=0. The equation of motion yields

�Sr
z= i�H ,Sr

z	=−J1�	r
�1�−	r−1

�1� �−J2�	r
�2�−	r−2

�2� � which leads to
the identification j=J1	�1�+2J2	�2�.14

It has been shown that a magnetic field can also stabilize
multipolar phases apart from a phase with chiral order, both
in the isotropic as well as in the anisotropic case.14–20 Such
multipolar phases are characterized by short-range transverse
spin correlations 
S0

+Sr
−� while correlations functions

�S0
+S1

+. . .

n times

Sr
−Sr+1

− . . .

n times

�

are algebraically decaying in an n-polar phase.
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In this paper we want to investigate how the spin-spin
correlations of the J1-J2 model �1� are affected not only by
quantum but also by thermal fluctuations. At the end we want
to relate our numerical results with various experiments on
edge-sharing copper-oxygen chains. A very powerful nu-
merical method to study the thermodynamics of one-
dimensional quantum chains directly in the thermodynamic
limit is the density-matrix renormalization group applied to
transfer matrices �TMRG�. Here the Hilbert space is trun-
cated to a small fixed number of states while the temperature
is lowered successively. In the calculations presented here
we will typically retain N=60–200 states both in the system
and the environment block. We will present data for tempera-
tures where the algorithm seems to be converged which is
judged by comparing results obtained for different numbers
of states N. For a detailed description of the TMRG algo-
rithm the reader is referred to Refs. 21–24. In a previous
TMRG study the isotropic J1-J2 model was investigated,
however, correlation functions were not calculated.25 In other
works the thermodynamics was studied based on the exact
diagonalization of small chains.20,26

The paper is organized as follows: in Sec. II we start with
the simplest model with isotropic exchange and without
magnetic field paying special attention to the evolution of the
incommensurabilities in the spin-spin correlation function
with temperature. In Sec. III we then study the effects of a
finite exchange anisotropy concentrating on the experimen-
tally relevant case of a small easy-plane anisotropy. In Sec.
IV we investigate signatures of multipolar phases, which are
stable for finite magnetic field at finite temperatures. Finally,
in Sec. V, we relate our numerical results obtained in Secs.
II–IV to data for three experimentally well-studied com-
pounds �LiCuVO4, LiCu2O2, Li2ZrCuVO4�. In particular,
we fit the susceptibilities using model �1� which allows us to
extract the parameters J1 and J2. We also discuss neutron-
scattering experiments which give access to the pitch angle
and compare to the results for the spin-spin correlation func-
tion obtained in Sec. II. Furthermore, we suggest future ex-
periments regarding the realization and observation of mul-
tipolar orders. The last section is devoted to a brief summary
and some conclusions.

II. THERMODYNAMICS OF THE J1-J2 CHAIN

For the isotropic case, �=1, without magnetic field it is
known that there is a quantum critical point at �=1 /4 sepa-
rating a ferromagnetic phase for ��1 /4 from a phase with a
singlet ground state. A tiny gap for ��1 /4 has been
predicted,12 however, even if this gap really exists it will
only show up at extremely low temperatures. In the tempera-
ture range accessible numerically, the susceptibility 

smoothly approaches the result for the nearest-neighbor
Heisenberg chain known from Bethe ansatz27 for �→� as is
shown in Fig. 1. At the critical point, 
�T� shows a power-
law divergence.28–30 A thorough investigation of the critical
properties using the TMRG algorithm will be presented
elsewhere.31

Numerically, we can also obtain the inner energy e and
the free energy f �see Ref. 24�. This gives us the entropy

s= �e− f� /T and the specific heat C=T�s /�T using a numeri-
cal derivative. The results for various � are presented in Fig.
2. For �=0.4 we find a sharp low-temperature maximum and
a broad maximum at higher temperatures consistent with the
calculations of Lu et al., Ref. 25. A similar structure is also
found for smaller values of �.20,25 For ��0.6, however, the
low-temperature maximum becomes much broader and shifts
to higher temperatures so that a second maximum does not
appear anymore.

Next, we want to study various correlation functions. At
finite temperatures all correlation functions will be exponen-
tially decaying and we can expand any two-point correlation
function of an operator Or as


O0Or� − 
O0�
Or� = �
j=0

�

Mje
−r/
jcos�kjr� . �3�

Here Mj is a matrix element, 
 j is a correlation length, and kj
is the corresponding wave vector. Within the TMRG algo-
rithm both 
 j and kj are determined by the ratio of the lead-
ing to next-leading eigenvalues of the transfer matrix.21,24

For large distances r�1 the correlation function is domi-
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FIG. 1. �Color online� �a� Susceptibilities near the
quantum critical point �=1 /4. �b� Susceptibilities for
�=2.0,1.6,1.2,1.0,0.8,0.6 �solid lines from bottom to top�. For
comparison, the result for the nearest-neighbor Heisenberg chain
obtained by Bethe ansatz is shown �dashed line�.
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FIG. 2. �Color online� Specific heat for �=0.4,0.6, 1.0, 1.4, and
2.0 �from bottom to top�.
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nated by the largest correlation length and the corresponding
wave vector which we will denote as 
�
0 and k�k0 in the
following.

Of particular interest is the evolution of the wave vector k
for the spin-spin correlation 
S0Sr�. This can be seen as the
quantum-mechanical analog of the pitch angle of the classi-
cal spiral. In Fig. 3 it is shown that k does not only depend
on the frustration � but also shows a strong dependence on
temperature, in particular, for values of � close to the critical
point �c=1 /4. Contrary to the classical case, the pitch angle
at low temperatures is very close to � /2 for ��0.6 as is
shown in more detail in Fig. 4�a�. This means that for these
frustration values the spin structure develops an almost per-
fect �short-range� four-site periodicity at low temperatures.
In Fig. 4�b� the extrapolated k value �pitch angle� for zero
temperature is shown as a function of �. Our result is in good
agreement with an earlier DMRG calculation.13 Note that k
depends nonmonotonically on temperature for ���c. At in-
termediate temperatures the pitch angle tends to become
more classical �see squares in Fig. 4�b�	 meaning that k first
decreases with increasing temperature. At high temperatures,
on the other hand, the correlations become more commensu-
rate with the lattice and k again approaches � /2. It is impor-
tant to stress, however, that the leading correlation length not
only becomes very small at high temperatures but that also

other correlation lengths of similar magnitude but with zero
wave vector appear in the expansion �3�.

One might think that the strong trend toward a formation
of a four-site periodic structure with increasing � could be
related to a concomitant dimerization. However, as is shown
exemplarily in Fig. 5, this is not the case. While substantial
dimer and chiral correlations with comparable correlation
lengths do exist, both correlation lengths are about a factor
two smaller than the spin-spin correlation length.

Another way of defining a quantum analog of the classical
pitch angle is the possibility to study at which wave vector q
the static spin-structure factor

S�q� =
3

4
+ 2�

r=1

�

cos�qr�
S0Sr� �4�

is peaked. This definition of the pitch angle is equivalent to
the definition in Eq. �3� if the correlation function is domi-
nated by the leading correlation length, i.e., 
0�
 j for j�1.
This is the case for all frustration parameters shown in Fig. 6

FIG. 3. �Color online� The wave vector k of the spin-spin cor-
relation function depends not only on � but also on temperature.
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FIG. 4. �Color online� �a� k as a function of temperature
for �=0.6,0.8, . . . ,2.0 �from bottom to top�. �b� Extrapolated k
�pitch angle� for zero temperature �circles� and k at T /J2=1.0
�squares�. The dashed lines are a guide to the eyes. For comparison,
the classical pitch angle �=arccos�1 /4�� �solid line� is shown.
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FIG. 5. �Color online� Various correlation functions for �=2
and T /J2=0.05. The circles denote the spin-spin �Or=Sr�, the
squares the dimer �Or=SrSr+1�, and the diamonds the chiral corre-
lation function �Or=Sr�Sr+1�. The lines are a guide to the eyes.
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FIG. 6. �Color online� The static spin-structure factor S�q� for
temperatures T / �J1�=0.5,0.2,0.1,0.05,0.035,0.02 �along the arrow
direction� with �a� �=1 /4 �quantum critical point�, �b� �=0.3, �c�
�=0.6, and �d� �=1.0. The inset of �a� shows the deviation from
the sum rule S��qS�q�=3 /4.
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except for the critical value �c=1 /4 �Fig. 6�a�	. Here the
structure factor is very flat near q�0 meaning that in the
expansion �3� comparable correlation lengths exist with a
wave vector k=0 and with wave vectors which have small
incommensurate values. The accuracy of the numerical data
can be checked by calculating the sum rule. For all � and all
temperatures the sum rule is fulfilled with deviations of the
order 10−3–10−4 as is exemplarily shown in the inset of Fig.
6�a�.

III. ANISOTROPIC CASE

In the edge-sharing spin-chain compounds substantial ex-
change anisotropies exist. For LiCuVO4, for example, the g
tensor has been measured by ESR and an exchange aniso-
tropy on the order of 6% has been estimated.32 This aniso-
tropy is expected to pin the spins to the ab plane and this is
indeed observed in experiment.5,7 Theoretically, one expects
that an XXZ-type anisotropy ���1� enhances chiral correla-
tions. In this case even long-range chiral order �
	�n���0� is
possible at zero temperature in the purely one-dimensional
model because only the remaining Z2 symmetry has to be
broken. In previous numerical studies the anisotropic model
�1� has already been investigated, the results, however, have
been contradictory.18,33 In Ref. 33 a large region of the phase
diagram has been found to be occupied by a dimer phase
whereas spin-liquid phases occur for very small and large
values of �. In Ref. 18, a dimer phase and spin-liquid phases
have again been found but in addition also a chiral phase for
��1. Both studies were based on exact diagonalization. In a
very recent density-matrix renormalization-group study the
anisotropic model at finite magnetization was investigated.16

A dimer phase was not found to be stable, instead it was
shown that for most parameters a chiral phase or a spin-
liquid phase �SDW2 phase� occur.

We will concentrate on one value of anisotropy, �=0.8.
This is larger than what is expected for the edge-sharing
cuprate chains. However, this way the effects of the aniso-
tropy are more obvious and the results should qualitatively
be similar to those for realistic values for these materials. To
see whether a spin-density wave �SDW�, a dimer or a chiral
phase is stable we study the longitudinal spin-spin �Or=Sr

z�,
the dimer-dimer �Or=SrSr+1�, and the chiral-chiral
�Or=	�1�� correlation functions. In Fig. 7 results for the cor-
responding correlation lengths at �=0.4 are shown. For cor-
relation functions which decay algebraically at zero tempera-
ture we expect that the correlation length diverges as

�1 /T. Studying 
T as in Fig. 7 thus separates long- and
short-ranged correlations. In this case we see that the chiral
correlation length diverges stronger than 1 /T indicating that
for these parameters we do have long-range chiral order at
zero temperature. While the dimer is indeed larger than the
chiral correlation length over a wide temperature range, the
situation is reversed at low temperatures. Hence a dimer
phase can only possibly occur if also interchain couplings are
present which might stabilize such an order at intermediate
temperatures. That the chiral correlations indeed dominate at
low temperatures is shown exemplarily for T /J2=0.125 in
Fig. 7�a� where the chiral and longitudinal spin-spin correla-

tion functions are compared. Here the wave vector k of the
longitudinal spin-spin correlation function is incommensu-
rate and again shows a strong dependence on temperature
�Fig. 7�b�	.

For �=0.6, shown in Fig. 8�a�, the chiral correlation
length is again dominant at the lowest temperatures which
are accessible numerically, however, there is no indication
for long-range chiral order at zero temperature. Remarkably,
all three correlation lengths are of very similar magnitude at
low temperatures. This suggest that we are very close or at
the phase transition from a phase with long-range chiral or-
der at smaller values of � to a phase which most likely has
spin-liquid character with algebraically decaying correlation
functions. Indeed, at �=2.0 shown in Fig. 8�b� the spin-spin
correlation length is clearly dominant with oscillations
k
� /2 at low temperatures pointing to an SDW2 phase. We
conclude that if a dimer phase exist at all for �=0.8 it has to
be confined to a very narrow range of frustration parameters
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FIG. 7. �Color online� The longitudinal spin �solid line�, the
dimer �dashed line�, and the chiral correlation length �dot-dashed
line� for �=0.4 and �=0.8. At low temperatures the chiral correla-
tion length diverges stronger than 1 /T indicating long-range order
at zero temperature. �a� The longitudinal spin-spin and the chiral
correlation functions at T /J2=0.125 showing that chiral correlations
dominate. �b� The wave vector k of the longitudinal spin-spin cor-
relation function.
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FIG. 8. �Color online� The longitudinal spin �solid line�, the
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lengths for �=0.8 with �a� �=0.6 and �b� �=2.0.
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0.4���0.6. In Ref. 33 an unidentified phase was found for
0.3���0.45 with symmetries as expected for the chiral
phase. For ��0.7, on the other hand, a spin-liquid phase
was predicted with a dimer phase in between these two
phases. In our TMRG calculations we never find dominant
dimer correlations at low temperatures and our results sug-
gest that a dimer phase might not be stable at all but instead
a direct phase transition from the chiral to a SDW2 phase at
�
0.6 occurs.

IV. FINITE MAGNETIC FIELD: MULTIPOLAR PHASES

In the multiferroic spin-chain compounds a magnetic field
can be used to switch the electric polarization. A sufficiently
strong field induces a flop of the spins from the easy-plane
spiral to a spiral perpendicular to the applied magnetic field.
According to the spin-current mechanism this also leads to a
rotation of the electric polarization. Such a switching of the
ferroelectric polarization by an applied magnetic field has
been observed in LiCuVO4 �Ref. 7� as well as in LiCu2O2.2

Numerical studies of the J1-J2 model have shown that small
magnetic fields stabilize the chiral order while multipolar
phases become stable at intermediate field strengths before
the system ultimately becomes fully polarized for large
fields.14,17–20

As already eluded to in Sec. I, an algebraic decay of the

�S0
+S1

+. . .

n times

Sr
−Sr+1

− . . .

n times

�

correlation function is expected in an n-polar �n�2� phase
while the transverse spin-correlation function is gapped. For
the oscillations of the longitudinal spin-correlation function
we expect, in general,14,34,35

kT→0 =
�

n
�1 – 2m� , �5�

where m is the magnetization. This relation is a direct con-
sequence of the shift of the Fermi points by an applied mag-
netic field which acts as a chemical potential. For zero field,
n=2 would correspond to the four-site periodic spin structure
discussed previously.

An particular interesting case is �=0.4 with h=0.25J2
shown in Fig. 9. Here we find that the longitudinal spin-
correlation length is largest at high temperatures, then there
is a temperature range where the chiral correlation length
dominates while at the lowest accessible temperatures the
spin-correlation again dominates and seems to diverge like
1 /T. For zero temperature this field corresponds to a magne-
tization m
0.15
0.3msat, �Fig. 9�b�	 where msat=0.5 is the
saturation magnetization. Comparing with the zero-
temperature phase diagrams obtained in Refs. 14 and 17 we
see that for these values we are in the SDW2 phase but very
close to the phase boundary with the chiral phase. Our results
basically seem to confirm this picture although the oscilla-
tions k apparently slightly deviate from the value expected
for a n=2 multipolar phase even at the lowest temperatures
�see Fig. 9�a�	. Our data also show that in a certain tempera-
ture window chiral correlations can still be dominant. This

might be relevant once interchain couplings are taken into
account and might lead to a chiral phase stable at intermedi-
ate temperatures while the spins are collinear at higher and
lower temperatures. Two magnetic phase transitions have in-
deed been observed in LiCu2O2 where first a sinusoidal mag-
netic order is established followed by a helical order at lower
temperatures.2,36 While the magnetic structure even in the
low-temperature phase apparently is much more complicated
than a simple planar spiral36 and the J1-J2 model does not
seem to capture the essential physics of this compound �see
next section� it is nevertheless interesting that even in this
very simple model phases might be stable only in a certain
temperature range thus possibly giving rise to multiple mag-
netic phase transitions once interchain couplings are taken
into account.

In Fig. 10 the longitudinal spin-structure factor Szz�q� is
shown for �=0.32 and h=0.02J1. At low temperatures Szz�q�
is peaked at q=��1–2m� /3 �dashed line in Fig. 10� indicat-
ing an n=3 multipolar phase. Thus experimentally a multi-
polar phase can already be identified at finite temperatures by
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FIG. 9. �Color online� The longitudinal spin �solid line�, the
dimer �dashed line�, and the chiral �dot-dashed line� correlation
lengths for �=0.4 with �=1 and h=0.25J2. �a� The wave vector k
of the spin-spin correlation. �b� The magnetization m as a function
of temperature.
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studying the evolution of the structure factor as obtained in
neutron scattering. Such an experiment would be most inter-
esting for a compound close to the quantum critical point
�c=1 /4 where small magnetic fields are sufficient to stabi-
lize n=3 or even n=4 multipolar phases.14,17,20,35 As dis-
cussed in detail in Ref. 4 and in the following section,
Li2ZrCuO4 seems to be a very promising candidate for such
a material.

V. MULTIFERROIC SPIN-CHAIN MATERIALS

While in the corner-sharing copper-oxygen chain com-
pounds such as Sr2CuO3 and SrCuO2 the antiferromagnetic
exchange interaction is of very similar magnitude,
J�2000 K, a wide range of exchange parameters J1 and J2
has been reported in the literature for the edge-sharing com-
pounds. For LiCuVO4, for example, fits of the susceptibility
and of neutron-scattering data have led to the estimate
J1�−20 K and J2�50 K so that ��2.5.5 For Li2ZrCuO4,
on the other hand, susceptibility and specific-heat data have
been fitted by using J1�−300 K and ��0.3.4 Given that
the chains in these compounds consist of the same edge-
sharing copper-oxygen plaquettes, this huge variation in the
magnitude of the exchange couplings is surprising.

Here we want to reanalyze the data of three of the best
studied multiferroic chain compounds, namely, Li2ZrCuO4,
LiCuVO4, and Li2CuO2. We will concentrate on fitting sus-
ceptibility data using


exp = 
0 + 
J1-J2
. �6�

Here 
exp is the experimentally measured susceptibility, 
0 is
a constant contribution due to core diamagnetism and Van-
Vleck paramagnetism, and 
J1-J2

is the numerically calcu-
lated susceptibility for the J1-J2 model �1�. Such fits work
extremely well for the corner-sharing compounds because
the intrachain coupling is about three orders of magnitude
smaller than the interchain coupling.37–41 For LiCuVO4 it has
been reported that a three-dimensional �3D� magnetic order
becomes established below T3D�2.3 K.6 While this points
to intrachain couplings which are only one or at most two
orders of magnitude smaller than the interchain couplings, a
purely one-dimensional model is still expected to be a good
approximation as long as T�T3D. In Li2ZrCuO4 the situation
has not fully been clarified yet. A possible phase transition
might occur at T�6 K.4 Even if this is a 3D ordering tran-
sition, a one-dimensional model should again be valid over a
wide temperature range. Therefore the expectation is that the
physics of LiCuVO4 and Li2ZrCuO4 can largely be under-
stood within the framework of the J1-J2 model with the spin-
current mechanism being responsible for the multiferroic
properties.

The situation for LiCu2O2, on the other hand, seems to be
much more involved.1–3,36,42 Despite a number of studies, the
magnetic structure remains controversial. For instance, both
a spiral spin order in the ab as well as in the bc plane have
been reported.1,3 If the spin-current model is the correct ex-
planation for the observed polarization along the c axis2 then
the bc spiral must be realized. The two magnetic ordering
transitions at comparatively large temperatures, T
22 K

and T
24 K,36 point to much larger interchain couplings
than for the two other compounds discussed above. In fact, it
has been found that there are substantial spin correlations not
only along the chain direction �b axis� but also in the plane
of the copper-oxygen plaquettes perpendicular to the chain
direction �a axis� making the compound at low temperatures
almost two dimensional.42 One might speculate that the rea-
son why the magnetic properties of this material are so dif-
ferent is related to the fact that two different copper sites
exist—the in-chain Cu2+ and the Cu1+ interconnecting differ-
ent chains. This might lead to substantial charge fluctuations
and thus to enhanced magnetic interchain couplings. Never-
theless, a fit of the susceptibility at high temperatures using
the J1-J2 model might still be useful to obtain an estimate for
the magnitude of the J1 and J2 couplings.

The absolute values of the measured maxima of 
 already
allow some general statements about the magnitude of the
exchange constants and the frustration parameters �. In
LiCuVO4 and in LiCu2O2 the susceptibility is about two or-
ders of magnitude larger than in the corner-sharing chain
compounds Sr2CuO3 and SrCuO2 so that the antiferromag-
netic exchange constant J2 should also roughly be two orders
of magnitude smaller. In Li2ZrCuO4 the maximum is almost
an order larger than in the other two compounds clearly in-
dicating that this compound should be closer to the quantum
critical point �c=1 /4 than the other two compounds. If the
magnetic exchange constants are of comparable magnitude,
then � is expected to be largest for LiCu2O2 and smallest for
Li2ZrCuO4 with LiCuVO4 having an intermediate frustration
parameter.

The susceptibility of LiCuVO4 shown in Fig. 11 has a
maximum and a local minimum at low temperatures. If 
 can
indeed be described by the J1-J2 model then a comparison
with Fig. 1 indicates that ��0.5. The large � used in Ref. 5
can certainly not explain this structure. By performing a fit
according to Eq. �6� we find that J2=91 K and �=0.5 yields
the best fit as shown in Fig. 11�a�. A good fit is also possible
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FIG. 11. �Color online� The experimentally measured suscepti-
bility of LiCuVO4 for H �c �solid line� compared to fits �dots� fol-
lowing Eq. �6� with a gyromagnetic ratio g=2.313 �Refs. 6 and 32�.
�a� The best fit is obtained with 
0=6�10−5 emu /mol, J2=91 K,
and �=0.5. �b� An alternative fit with 
0=1.4�10−4 emu /mol,
J2=72 K, and �=0.6. �c� An exchange coupling J2=52 K similar
to the one in Ref. 5 can be used with 
0=2.7�10−4 emu /mol,
however, the frustration parameter �=1.0 chosen to obtain the best
fit is still much smaller than the one in Ref. 5 and the fit is much
worse than the ones shown in �a� and �b�.
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with J2=72 K and �=0.6 �Fig. 11�b�	. If we reduce the
next-nearest-neighbor exchange to J2�50 K as assumed in
Ref. 5 we have to choose ��1 to obtain the best-fit possible
with this value of J2 �Fig. 11�c�	. However, such a fit fails to
reproduce the low-temperature structure.

The susceptibility data for Li2ZrCuO4 have already been
analyzed in Ref. 4 by comparing with exact diagonalization
data for small rings consisting of up to N=20 sites. Finite-
size effects are expected to be negligible if T�v /N, where v
is the spin velocity. The spin velocity is on the order of the
exchange constant so that the finite-size data for 
 should be
reliable for T�20 K. Given that the maximum of 
 is lo-
cated at T
7.6 K, i.e., at temperatures where finite-size ef-
fects might play a role, it is helpful to reanalyze the experi-
mental data using the TMRG algorithm which yields results
directly for the infinite system. As shown in Fig. 12 very
similar fits to the one in Ref. 4 are obtained. While the mag-
nitude of the frustration parameter can only be varied slightly
if one wants to obtain a reasonable fit, the exchange param-
eters change dramatically, for example, from J1=−273 K for
�=0.3 to J1=−75 K for �=0.4. In local-density approxima-
tion calculations J1=−151�35 K and J2=35�12 K was
found which also will allow for a reasonable fit with a frus-
tration parameter �� �0.3,0.4	.4 We therefore confirm the
main conclusion of Ref. 4 that Li2ZrCuO4 is close to the
critical point �c=1 /4.

Finally, we want to analyze the susceptibility data for
LiCu2O2. As already mentioned, we do not expect that the
J1-J2 model will describe the susceptibility of this compound
at low temperatures and indeed we find that it is impossible
to obtain a good fit down to low temperatures �see Fig. 13�.
If we concentrate on temperatures large compared to the
magnetic ordering transitions at T�20 K, then a fit is pos-
sible and we find that J2
80–120 K. Because the suscep-
tibility can only be fitted at high temperatures, the frustration
parameter cannot be fixed precisely.

It is, however, important to note that the best fits for all
three compounds yield values of J2�100 K while

J1�−200 K. This confirms our expectation that these mate-
rials consisting of the same edge-sharing copper-oxygen
plaquettes should have very similar magnetic exchange con-
stants as is also the case for the corner-sharing chain com-
pounds. The values we obtain from the susceptibility fits are
consistent with values in the literature for LiCu2O2
�J1�−120 K, J2�80 K� �Refs. 1 and 2� and for
Li2ZrCuO4.4 For LiCuVO4, however, we find values which
differ dramatically from the values given in Ref. 5 which
later were also used in a number of other publications. We
want to stress again that these values are not consistent with
the latest susceptibility data.6 An analysis of neutron-
scattering data using a standard spin-wave dispersion which
seems to confirm these values5 is in our opinion not appli-
cable here. In such an analysis the magnon bandwidth is
directly determined by the bare exchange couplings while
the stark deviation of the quantum from the classical pitch
angle �see Fig. 4�b�	 suggests that the frustration parameter is
strongly renormalized due to quantum fluctuations.

The pitch angle measured experimentally in Ref. 5 of
�
83.7° is in fact in excellent agreement with the frustra-
tion parameters �=0.5–0.6 obtained from the fits in Fig. 11.
According to Fig. 4�b� we have a quantum pitch angle
�
83.5° for �=0.5 and �
87.3° for �=0.6. It is important
to stress again that only in the classical model large frustra-
tion parameters are needed to obtain pitch angles close to
90°. We expect, according to Fig. 4�a�, that the pitch angle in
LiCuVO4 can be reduced by 15–20 % by increasing the tem-
perature to T�J2�90 K. For Li2ZrCuO4 the magnetic
structure has not been studied so far. The pitch angle for
�=0.3 at zero temperature obtained from our numerical cal-
culations is �
51.5°. Here we expect a large variation with
temperature �see Figs. 3 and 6�b�	 and it would be interesting
to see if this can also be observed experimentally. For
LiCu2O2 a pitch angle �
62.6° has been measured.1,2 Such
a small pitch angle cannot be explained within the J1-J2
model given that ��0.6 according to the fits shown in Fig.
13. We are therefore again lead to the conclusion that the
J1-J2 model cannot explain the experimental data for this
compound.
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FIG. 12. �Color online� The measured susceptibility �solid line�
for Li2ZrCuO4 taken from Ref. 4 compared to fits using the J1-J2

model. An excellent fit �circles� is obtained using �=0.3, g=2, and
J1=−273 K �J2=81.9 K� with 
0=0 confirming the analysis in
Ref. 4 based on exact diagonalization data. A reasonable fit
�squares� is also possible with �=0.4, g=2.2, 
0=0, and
J1=−75 K. Inset: Blow up of the low-temperature region.
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FIG. 13. �Color online� The measured susceptibility �solid line�
for LiCu2O2 with H �c taken from Ref. 1 compared to fits using the
J1-J2 model. With g=2.2 the best fit is obtained with �=0.6,
J2=120 K, and 
0=0 �circles� while for g=2.3 a fit with �=1.6,
J2=83 K, and 
0=0 works best �squares�.
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VI. CONCLUSIONS

The rich physics of the J1-J2 model with ferromagnetic
nearest-neighbor coupling J1 and antiferromagnetic next-
nearest-neighbor coupling J2 has attracted a lot of interest
recently. The phase diagram for this model including ex-
change anisotropies and magnetic fields has been addressed
in a number of numerical studies.13,14,16–20 Here we have
shown that the physical properties of this simple model are
even more intriguing if the interplay of quantum and thermal
fluctuations is taken into account. In particular, we found that
the incommensurate oscillations of the spin-spin correlation
function �the quantum analog of the pitch angle of the clas-
sical spiral order� do not only strongly depend on the frus-
tration parameter �=J2 / �J1� but also on temperature. For
zero temperature we find an incommensurability �pitch
angle� � for ��0.6 which is very close to 90° in the quan-
tum model and thus very different from the classical pitch
angle �=arccos�1 /4�� in agreement with an earlier study.13

At temperatures T�J2, however, the pitch angle is much
closer to the classical value for ��0.5. Furthermore, we find
a very strong temperature dependence of the pitch angle for
frustration parameters close to the critical point �c=1 /4. We
therefore expect that the wave vector where the static spin-
structure factor for Li2ZrCuO4 is peaked—a compound
which according to Ref. 4 and the susceptibility analysis per-
formed here has a frustration parameter ��0.3–0.4—varies
significantly with temperature. For this range of frustration
parameters we find that a small easy-plane anisotropy �at
zero magnetic field� leads to long-range chiral order even in
the purely one-dimensional model.43 We could, however,
find no evidence for the dimer phase which was predicted in
Ref. 33 for the anisotropic case for larger frustration param-
eters. Another observation which again might be relevant for
future studies on Li2ZrCuO4 is that small magnetic fields
�which would correspond to 5–7 T for Li2ZrCuO4� can sta-
bilize an SDW3 �n=3 multipolar� phase for ��0.3. We sug-
gest that such a phase can already be identified by neutron
scattering at finite temperatures by monitoring at the same

time the peak position qmax of the static longitudinal structure
factor and the magnetization m. The signature of the SDW3
phase would be that qmax→��1–2m� /3 for T→0.

We also reanalyzed the susceptibility data for LiCuVO4.
Here the newer data in Ref. 6 seem to be of much better
quality than the older data in Ref. 5. The newer data clearly
show that the exchange parameters J1�−20 K, J2�50 K,
and �=2.5 used in Ref. 5 do not yield a reasonable fit. These
exchange parameters also seem very unlikely given that they
deviate significantly from those in other edge-sharing
copper-oxygen chains. Our analysis shows that the suscepti-
bility data are best fitted with J2
70–90 K and
�=0.5–0.6.

In LiCu2O2 two magnetic ordering transitions already oc-
cur at temperatures T3D�20 K and an analysis based on the
purely one-dimensional J1-J2 model clearly cannot be as suc-
cessful as for LiCuVO4 and Li2ZrCuO4. For T�T3D we have
shown that a reasonable fit of the susceptibility is neverthe-
less possible leading to J2�80–120 K. The frustration pa-
rameter remains, however, ambiguous in such a high-
temperature fit and we find �� �0.6,1.6	 with the best fit
being obtained for �=0.6.

Based on the best fits of the susceptibilities we conclude
that all three considered compounds seem to have very simi-
lar exchange constants J1�−200 K and J2�100 K. The
frustration parameter, on the other hand, varies from
�
0.3 for Li2ZrCuO4, �=0.5–0.6 for LiCuVO4 to ��0.6
for LiCu2O2. The parameters found here for LiCuVO4 are
fully consistent with the measured pitch angle �84°. For
LiCu2O2, on the other hand, the small measured pitch angle
�63° cannot be explained within the J1-J2 model stressing
again that this model is not sufficient to explain the experi-
mental data for this compound. The smallest pitch angle is
expected for Li2ZrCuO4. Based on our numerical calcula-
tions we predict ��53°.
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